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ABSTRACT
Automated essay scoring (AES) allows writing to be assigned
in large courses and can provide instant formative feedback
to students. However, creating models for AES can be costly,
requiring the collection and human scoring of hundreds of
essays. We have developed and are piloting a web-based
tool that allows instructors to incrementally score responses
to enable AES scoring while minimizing the number of es-
says the instructors must score. Previous work has shown
that techniques from the machine learning subfield of active
learning can reduce the amount of training data required to
create effective AES models. We extend those results to a less
idealized scenario: one driven by the instructor’s need to score
sets of essays, in which the model is trained iteratively using
batch mode active learning. We propose a novel approach
inspired by a class of topological methods, but with reduced
computational requirements, which we refer to as topologi-
cal maxima. Using actual student data, we show that batch
mode active learning is a practical approach to training AES
models. Finally, we discuss implications of using this technol-
ogy for automated customized scoring of writing across the
curriculum.
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INTRODUCTION
The ability to express yourself through writing – the ability to
petition, to generate cogent arguments, and to express ideas
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with clarity and vigor – is a critical life skill. It is crucial for
success in school, in career, and as a fully functional citizen. It
is a skill that develops with practice (e.g., [14]), but assessing
writing to support that practice, especially early drafts, is a
time-intensive human task. Over the last 20 years, Automated
Essay Scoring (AES) has steadily improved, so that, for many
writing tasks, automated assessment performance is compa-
rable to that achieved by human scoring [32, 33]. Most auto-
mated scoring is built upon machine learning models trained
on essay sets that have been scored by multiple human scorers.
In this supervised learning paradigm, the models become able
to mimic the human scoring. Many of these models are trained
for high stakes examinations, which requires an intensive and
expensive process with highly trained scorers, and extensive
quality assurance. In situations with such high impact, this ef-
fort can be justified, but our interest is at the formative practice
stage of the student writing experience for large courses.

We envision writing being integral to instruction. Writing
should be part and parcel of taking a class; not a rare event, but
the norm. This vision requires reducing the effort involved in
creating and scoring writing prompts and in developing their
associated automated assessment models. We have developed
and are piloting a web-based software system that supports the
entire student writing process: instructor prompt and rubric
creation, student essay writing, human scoring, model build-
ing, and archiving of models for reuse [3]. Automated scoring
is supported in the system when students write responses to
a prompt. If scoring models already exist for the prompt,
students may receive immediate feedback when they submit
drafts of their essays. If a model does not exist, the essays
are batched at the due date and directed to humans for scor-
ing. These human scorers could be the instructor, one or more
teaching assistants, or professional scorers. After the essays
are scored, those scores are returned to the students. In the
background, a machine learning system uses the scores in an
attempt to build an automated scoring model.

The overwhelming need for writing in the classroom originates
from it being an authentic task and a lifetime skill. It is also
a constructed response that requires complex thinking skills,
which allows for an expansive range of correct and incorrect
executions. Beginning with the earliest attempts to standardize
the scoring of essays in the 1960s [9], it was recognized that
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the boundaries between essay scores were fuzzy. In high stakes
scoring, even well trained human scorers typically disagree,
often substantially. Beyond training and monitoring scorers,
this issue is mitigated in high stakes scoring by requiring two
scorers (in the modern world, one of those scorers is often
automated). If the two scorers disagree sufficiently, a third
scorer is brought in to resolve the disagreement. In addition to
this innate imprecision, human scorers also often exhibit flaws
in their scoring, which result from rater bias [37]. In modern
high stakes scoring, the expected inter-rater correlation is in
the range of 0.7–0.8, and those historical human limitations
have become enshrined as a standard by which automated
scoring is currently judged [36]. For formative writing, we are
attempting to provide useful and accurate feedback while also
attempting to relax some of the high stakes constraints (such
as multiple professional scorers) that would make writing in
the classroom impractical.

The current process for building automated scoring models
for a writing prompt involves gathering a fixed number of
student essays (usually a minimum of 300 or more), human
scoring them all, building a model, and then determining if the
model is accurate (e.g., agrees well with the human scorers).
If the number of essays is not sufficient, then another essay
collection period is initiated. An essential step to decreasing
human scoring effort is decreasing the required number of
scored essays. In simulations that we have run, it is often
possible to build a satisfactory model with far fewer than 300
scored essays. In this work, we investigate an alternative
model building process that, by determining which essays
would most benefit the training of the model, reduces the total
number of scored essays required.

In this approach, a small subset of essays are selected for scor-
ing. After that subset is scored by a human, a model is built
and evaluated. If the model meets performance criteria, the
remainder of the essays can be automatically scored, and the
model archived for future use on the prompt. If the model is
not acceptable, the process is repeated until either a satisfac-
tory model is obtained or it is determined that the prompt is
not a good candidate for autoscoring. By selecting the essays
that are most relevant to model training, this approach has the
potential to substantially reduce the human scoring workload.

Active learning [30] is a subfield of machine learning con-
cerned with reducing the amount of labeled data needed to
train a supervised model. This is of particular interest when
there is a large unlabeled dataset and acquiring labels is expen-
sive. This exactly describes our situation, where we have a set
of unscored student essays and we want to train a satisfactory
model while scoring as few essays as possible.

In this work, we describe active learning, and discuss active
learning techniques that are especially promising for use in se-
lecting batches of essays. We propose a novel simplification of
a topological active learning approach, which we call topolog-
ical maxima. We place this research in the spectrum of active
learning applications, from more general natural language pro-
cessing (NLP) to its use in assessment. We then apply these
techniques on the ASAP (Automated Student Assessment

Prize) essay data set1 and on essays from a set of prompts that
are currently being used in college level courses. Finally, we
conclude with some observations on the techniques, describe
implications for delivering automated writing scoring at scale,
and note future directions.

ACTIVE LEARNING
We are concerned with the active learning paradigm of pool-
based sampling [30]. Pool-based sampling assumes that we
have a single static set U of unlabeled datapoints. Given access
to an oracle (such as a human scorer) that labels datapoints at
some cost, the goal is to construct a set of labeled datapoints
L that allows us to train a performant supervised model while
minimizing the total labeling cost.

Many active learning techniques are sequential – that is, they
iteratively select a single datapoint from U, query the oracle for
the label, and add that point to L. The downside of sequential
approaches is that the human labeler must wait while the
active learning algorithm selects the next point for labeling.
This downtime can be substantial, as many variants of active
learning require access to a model trained on the current set L,
forcing the human to wait for both active learning and model
training. For example, in our current implementation, it can
take up to 10 minutes to generate, evaluate, and deploy a new
model. For this reason, we are interested in selecting subsets
of U for labeling, in what is known as batch mode active
learning. By using batch mode active learning, a scorer can
score multiple essays before waiting for model retraining.

Batch mode active learning generally performs worse than
sequential active learning, but has been shown to be effective
in contexts where downtime for the human labelers is expen-
sive [22]. Some active learning algorithms do not rely on the
labels to generate their selections, and for these algorithms,
operating in sequential or batch mode results in the same se-
lections. However, for uncertainty sampling-based methods
that rely on computing the current model’s uncertainty, the
difference between sequential and batch mode active learning
can be substantial [2]. For some types of supervised models,
the problem of identifying sets of points that minimize un-
certainty can be cast as a submodular function optimization
problem, allowing for algorithms that perform well with good
theoretical guarantees [7, 19, 16, 8].

For methods that utilize the supervised model’s uncertainty,
there is a cold start problem: when selecting the very first
batch, there is no existing trained model to estimate the un-
certainty with. One way to mitigate this is to select the initial
batch (referred to as a seed set) using a different algorithm.
Seed set selection can have a substantial impact on overall
performance [10].

In natural language processing applications, active learning
has been shown to be effective in a variety of tasks, such as
named entity recognition [35, 31], annotation noise detection
[27], sentiment classification [23], word sense disambiguation
[10], and text categorization [15].

1https://www.kaggle.com/c/ASAP-AES
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Active learning has found applications in educational NLP
tasks as well. Niraula and Rus showed that active learning can
be used when training classifiers for the evaluation of automat-
ically generated gap-fill questions [25]. Horbach and Palmer
demonstrated that batch mode active learning can provide ben-
efits when training short-answer scoring models [17]. In par-
ticular, they find that uncertainty sampling-based approaches
generally perform better than random sampling, which is a
commonly used baseline in the evaluation of active learning
algorithms.

To the best of our knowledge, the only prior work that inves-
tigates active learning for AES is Dronen et al., in which the
authors demonstrate that active learning reduces the amount of
training data needed to train an ordinary least-squares regres-
sion model for AES [11]. In their active learning experiments,
they evaluate model performance with respect to training set
size. However, they do not build these training sets incremen-
tally – at each training set size, active learning is used to select
an entirely new training set. In contrast, we pose the problem
of training an AES model as a batch mode active learning task,
and our training sets are incrementally constructed from those
batches. Our approach is designed to be a realistic simulation
of active learning used by teachers in large courses, and ex-
plicitly accounts for the fact that we are selecting batches of
essays simultaneously.

BATCH MODE ACTIVE LEARNING
In this section, we describe the active learning algorithms that
we use in our experiments. We approach AES as a regression
task. Student essays are passed through a natural language
processing pipeline which extracts various linguistic features,
allowing each essay to be represented by a vector of real num-
bers denoted by x. Random forests are used as our supervised
modeling technique, and so we have selected active learning
algorithms that can perform well in this setting. We use ran-
dom forests because they have been found to perform well in
real-world AES applications [13].

For approaches that need the uncertainty of the model at a
point x, we use the variance of the individual trees’ predictions
for x, and denote this variance as v(x). For approaches that
require a distance metric, we denote the distance by d. We
assume that the size of the selected batch is a user-defined
constant, denoted by b.

Kennard-Stone
The Kennard-Stone active learning algorithm attempts to uni-
formly sample points from the feature space [18]. Kennard-
Stone begins by selecting the two points satisfying

argmax
x,x′∈U

d(x,x′),

that is, the two points in U that are furthest apart from each
other. All further points are selected to maximize the minimum
distance to any point in L:

argmax
x∈U

(
min
x′∈L

d(x,x′)
)
.

Kennard-Stone is deterministic and its behavior is identical in
both sequential and batch mode settings. Our use of Kennard-
Stone is based on findings in Dronen et al. that it performed
well for AES model training [11].

Uncertainty Sampling
Uncertainty sampling [21] is a popular and effective active
learning approach. Uncertainty sampling selects the point in
U that the model is most uncertain about:

argmax
x∈U

v(x).

Since we are using random forests, this can also be viewed
as query by committee for regression [5]. Intuitively, if the
trees have substantially differing predictions for a specific
point, then it is likely an important point to have labeled by
the oracle.

When used for batch mode active learning, uncertainty sam-
pling selects the b highest variance points. However, uncer-
tainty sampling can perform poorly in batch contexts, because
the points selected may be too similar to each other [30]. For
example, if the two points with the highest variance are iden-
tical, then batch mode uncertainty sampling will select both,
even though selecting only one would provide the model with
almost as much information about that region of the feature
space.

Bounded Coordinated Matching
To address the issues of uncertainty sampling in batch mode
active learning, Azimi et al. introduced the bounded coor-
dinated matching (BCM) algorithm [2]. BCM assumes that
the selections made by sequential uncertainty sampling are
generated by a k-Matching Mixture Model (k-MM model).
The k-MM model is similar to a Gaussian Mixture Model, but
rather than assuming that the underlying generative process is
i.i.d, k-MM models generate k points by sampling one point
from each of the k components.

Parameter estimation for the k-MM model is done by Monte
Carlo simulation. For each of the N simulations, we select k
points using simulated sequential uncertainty sampling. We
simulate sequential uncertainty sampling by iteratively select-
ing the highest variance point x, labeling it by sampling a label
y from the model’s posterior distribution for x, adding (x,y) to
L, and retraining the model. As we are using random forests
for regression, we sample from the posterior distribution by
randomly selecting one tree in the ensemble and using its
prediction for x as y.

Each of these N simulations generates a selection of k points;
for the i-th simulation, we denote this selection as Si. Using
these simulated selections, BCM is able to approximate the
mean vectors µ of the underlying k-MM model. Due to the
nature of the task, these mean vectors are themselves points in
U , and so by taking k = b, we can use µ as the batch selected
by BCM. That is, BCM attempts to select the k points in
U that best represent the repeated simulations of uncertainty
sampling.

BCM approximates µ as follows. Assuming that we have a set
of candidate mean vectors µ̂ , for the selections Si of the i-th



Monte Carlo simulation, we can compute the earth mover’s
distance [28] D(µ̂,Si) between those selections and the mean
vectors (with our distance metric d as the ground distance
used in the computation of D). BCM seeks to minimize the
objective function

g(µ̂) =
N

∑
i=1

D(µ̂,Si)

by beginning with µ̂ =U and then greedily removing points
from µ̂ until |µ̂|= k. Because g is supermodular, the error of
this approximation has well-defined bounds [2].

Azimi et al. provide a number of techniques to speed up
this computation [2]. However, due to the Monte Carlo sim-
ulations and repeated earth mover’s distance computations,
BCM is much more computationally intensive than the other
approaches considered in this work.

Maximum Persistence
Introduced in Maljovec et al., maximum persistence adapts
uncertainty sampling to batch mode active learning by inter-
preting the task as a topological problem [24]. Rather than
selecting the points with the highest variance, maximum per-
sistence selects the points where the variance function is most
persistent.

Persistence is a way of quantifying how robust topological
features are to noise. In this case, the topological features that
we are interested in are the maxima of the variance function
v. Intuitively, the persistence of a maximum m indicates how
much the value of v could increase at points near m before m
ceases to be a maximum.

To compute persistence, we first need to formalize a notion
of which points are near each other. To do so, we create a
neighbor graph G from U under our distance metric d. In this
work, we use k-nearest-neighbor graphs, but any graph that
captures the spatial relationships of the points in U could work.
We denote the vertices in G by GV , and the edges by GE .

As we are specifically interested in the maxima of the variance
v over G, we construct a discrete approximation of the gradient
of v. For each vertex xi ∈ GV , we can build a set

∆i = {δi j | ei j ∈ E(xi)},
where E(xi) is the set of edges incident to xi, ei j is the edge
between xi and x j, and

δi j =
v(x j)− v(xi)

d(xi,x j)
.

∆i is an approximation of the derivative of v at xi in every
possible direction (that is, to every vertex that xi is connected
to).

We define xi to be a maximum when none of its adjacent
vertices have higher variance, that is, when

∀δi j ∈ ∆i,δi j < 0.

Given these maxima, we can use the algorithm in [6] to com-
pute the persistence; we briefly outline the algorithm here.

We first assign each vertex xi to a maximum mi. If xi is a
maximum, we assign it to itself. Otherwise, we find the neigh-
bor x j of steepest ascent (the neighbor x j that corresponds to
argmax j(∆i)), recursively assign x j to a maximum m j, and
then assign xi to m j as well. We refer to the set of points
assigned to a maximum m as the descending manifold for m.

Once we have these manifolds, we begin constructing a new
graph Ĝ by iteratively inserting every point xi ∈ GV into Ĝ
in descending order of their values v(xi). For each vertex
xi added to Ĝ, we also add an edge to every other vertex x j

currently in ĜV for which ei j ∈GE . During this process, when-
ever at least one other vertex x j connected to xi belongs to a
different manifold than xi, we have connected two descending
manifolds.

When this occurs, we merge the two manifolds and compute
persistence. We assume that v(mi) > v(m j). We merge the
two manifolds by declaring that both now correspond to mi,
the higher of the two maxima. The persistence of m j is then
defined to be v(m j)− v(xi). This value quantifies how far
down the descending manifold of m j we have to travel before
we encounter a manifold belonging to a higher maxima.

After all vertices have been added to Ĝ, only one manifold
will remain. We define that the maximum associated with this
manifold has infinite persistence.

Once we have computed the persistence of the maxima, we
then select the b maxima with the highest persistence. If not
enough maxima exist, we fall back to uncertainty sampling to
select the remaining points.

Topological Maxima
We also consider a simplification of maximum persistence,
which was briefly discussed in [24], but to the best of our
knowledge has never been empirically tested. This simplifica-
tion leverages the neighbor graph, but does not compute per-
sistence, allowing us to determine how important persistence
is to maximum persistence’s ability to select useful batches.
As when computing maximum persistence, we compute a
neighbor graph, label each vertex with its variance, and find
the maxima of the graph. Rather than computing the persis-
tence, however, we stop here and select the b maxima with the
highest variance. As in maximum persistence, if not enough
maxima exist, we fall back to uncertainty sampling to select
the remaining points. We refer to this algorithm as topological
maxima.

DATASETS
We evaluate these active learning approaches on two datasets.
The first is a set of seven college-level formative writ-
ing prompts: five psychology prompts and two accounting
prompts. These prompts are currently in use in college courses.
Each prompt has a five-trait rubric with scores ranging from
1 to 4. We are primarily interested in scoring for content, so
in this work, we focus solely on one rubric trait – the content
score. Each essay was scored by two trained scorers, and we
use the mean human score as the true score of each essay.
While we are ultimately interested in situations where there is
only one scorer (the instructor), for evaluating our algorithms



Prompt Type Grade Level Score Range Number of Essays Mean Word Count
Psychology-1 Psychology College 1–4 343 385
Psychology-2 Psychology College 1–4 308 473
Psychology-3 Psychology College 1–4 424 383
Psychology-4 Psychology College 1–4 448 258
Psychology-5 Psychology College 1–4 477 263
Accounting-1 Accounting College 1–4 309 337
Accounting-2 Accounting College 1–4 349 356
ASAP 1 Persuasive 8 2–12 1783 410
ASAP 2a Persuasive 10 1–6 1800 430
ASAP 2b Persuasive 10 1–4 1800 430
ASAP 3 Source 10 0–3 1726 121
ASAP 4 Source 10 0–3 1770 104
ASAP 5 Source 8 0–4 1805 139
ASAP 6 Source 10 0–4 1800 171
ASAP 7 Narrative 7 0–30 1569 189
ASAP 8 Narrative 10 0–60 723 681

Table 1. Characteristics and summary statistics of prompts used in experiments.

we have chosen to use prompts with scores from multiple scor-
ers. Given issues such as rater bias mentioned earlier, using
the mean of multiple scores provides a better estimate of the
student’s true performance on the essay than either individual
score would.

We also use the ASAP AES dataset [34], which consists of
eight different prompts and student responses to those prompts.
These cover three kinds of tasks: persuasive writing, response
to source material, and narrative writing. These prompts were
assigned to students in grades 7 to 10. Most prompts have only
one trait, but prompt 2 has two traits. We model these two traits
separately by splitting prompt 2 into two modeling tasks, one
for each trait, which we will refer to as prompts 2a and 2b. For
prompts 7 and 8, the trait score range is substantially different
from the 1 to 4 range in our college-level prompts (0 to 30
and 0 to 60, respectively). We include these prompts in our
experiments, but note that different approaches or measures
might be more appropriate given these score ranges.

The characteristics of these datasets are summarized in Table
1.

For these active learning experiments we used a total of 5511
features. This feature set is intended to be useful in describing
many aspects of an essay, but is specifically designed for
scoring content. The features divide naturally into three classes
that have frequently been used in automated scoring of writing
(e.g. [1, 12, 4]). The first class of features can be described
as surface features, and provides metrics on the surface level
of the language, such as word counts, mean syllables per
word, and mean sentence length. The second class derives
from information theoretic statistical features such as n-gram
likelihoods [29]. This class of features measures how likely it
is that word patterns in a passage would occur in large samples
of English text, as well as other regularities in the patterns
of language use, giving a measure of how “English-like” the
word use is. These features capture such aspects of language
as syntactic complexity, flow, and word choice. The third class
of features involves content overlap at the word and character

level as well as statistics-based semantics measures, based on
latent semantic analysis [20].

EXPERIMENTS
We use scikit-learn’s random forest implementation [26]. In
all experiments, we use forests of 300 trees, with 12 randomly
selected features considered at each split. For algorithms that
require a distance metric, we use the Euclidean distance. For
algorithms that utilize a neighbor graph, we use 4-nearest-
neighbor graphs, and for bounded coordinated matching, we
use 10 Monte Carlo simulations. These settings were found to
perform well in preliminary experiments. We evaluate model
performance by computing the Pearson correlation coefficient
of the model predictions and the average human score.

Our initial seed set is of size 4, with essays selected using
the Kennard-Stone algorithm. We use a batch size of 10, and
terminate the run after 15 batches, or when the model achieves
95% of the performance achieved on the full training set,
whichever comes later. After each batch is selected, we label
the batch with its true scores, and then re-train the random
forest.

For each prompt, we create 100 randomized training splits, re-
serving 10% of the dataset for testing. We then run each active
learning algorithm on each split. We use random selection as
a baseline. We also compute the model’s performance when
trained on the entire training set.

DISCUSSION
We summarize our results in Figure 1. This figure shows
the average training set size needed to achieve 95% of the
performance of a model trained on the full training set. We
use this 95% performance threshold to quantify the impact of
each active learning approach on the amount of training data
needed to train a performant model, while also accounting for
the fact that our modeling process is inherently random, and
so even two models trained on exactly the same training data
would not achieve exactly the same performance.



Figure 1. Mean training set size required to reach 95% of full training set performance. Error bars are 95% bootstrap confidence intervals.

Across all prompts and for all active learning algorithms, we
can reach 95% of the full training set performance with train-
ing sets that are substantially smaller than the full set. For
example, on ASAP 4, random selection achieves 95% of the
full training set performance after approximately 50 essays
have been labeled on average.

On most prompts, the uncertainty sampling approaches per-
form as well or better than random. The one exception is
Accounting 2, where all algorithms perform noticeably worse
than random. We also see that, for three prompts (ASAP 5,
Accounting 1, Psychology 3), none of our approaches mean-
ingfully outperform random. This may be a boundary effect,
as the mean size at which random achieves 95% performance
is very small for these prompts.

Kennard-Stone performs notably worse than all other ap-
proaches (including random) on ASAP 4, 5, 6, and 7, as
well as on Psychology 5. This indicates that Kennard-Stone is
poorly suited to our AES task.

We introduced the topological maxima algorithm in an at-
tempt to determine whether or not the persistence aspect of
the maximum persistence algorithm was required. From these
results, we conclude that it is – topological maxima performs
very similarly to uncertainty sampling. This suggests that it
is persistence, not just the neighbor graph, that is key to the
performance of maximum persistence.

Figure 2 shows, for each prompt, the absolute performance
of the active learning algorithms as we increase the number
of labeled points. This figure also shows the performance of
a model trained on the entire training set. This figure rein-
forces the conclusion that no algorithms outperform random
on ASAP 5, Accounting 1, or Psychology 3 due to a boundary
effect – our absolute performance on these prompts starts high
and remains high across all training set sizes.

Overall, we conclude that effective AES models can be trained
with many fewer scored essays than are used in current sys-
tems. Even with random selection, we often only need approx-
imately 50 essays to train a performant model. Determining
which active learning approach is appropriate depends on the
characteristics we need for our task. For training AES mod-
els for formative writing, we want an approach that provides
consistently good performance across prompts, even at the
expense of missing out on very good performance on some
prompts. The very poor performance at low sizes on ASAP 3
for uncertainty sampling and topological maxima makes those
approaches less appealing. For our needs, BCM performs very
well, in that it provides good performance, relative to random,
across all prompts – in AES applications that can tolerate its
relatively slow speed, it appears to be a good choice. For appli-
cations that require a faster algorithm, maximum persistence
also has good overall performance.

Our feature space, model choice, and active learning algo-
rithms were all chosen with the intention of working well
for college level formative writing (e.g., the Psychology and



Figure 2. Mean model performance for training set sizes 14 to 154. Error bars omitted for clarity.



Figure 3. Box plots showing the distribution of model correlations of
select active learning approaches across training set sizes for Psychology
5.

Accounting prompts here). That we also achieve strong perfor-
mance on the ASAP AES dataset suggests that active learning
can be useful for AES in general, not just for the specific
domains that we are interested in.

Finally, we show the overall distribution of correlations for
Psychology 5 across training set sizes for random, Kennard-
Stone, and maximum persistence (Figure 3). It is important
to be cognizant that there is considerable variability in per-
formance between runs, and that just because a model has
been trained on 154 points does not guarantee that it will per-
form well. A critical aspect of any real-world active learning
AES system will be the ability to effectively evaluate model
performance.

ACTIVE LEARNING FOR LARGE SCALE FORMATIVE
WRITING
Our ultimate goal is to enable instructors to train AES models
for their own classrooms. Our approach leverages two existing
educational activities: students doing writing and instructors
doing scoring. But it optimizes the task by having the instruc-
tor do the minimal amount of scoring before the computer
takes over the task.

We have developed a software system to enable this vision [3],
shown in Figure 4. This figure captures a moment from an
instructor interacting with our system during the AES model
building process. The instructor is scoring student essays in an
order based on a batch provided by active learning, computed
after receiving the previous batch of instructor scored essays.
We employ the metaphor of training an AI Assistant to help
instructors better understand their role in the training process.
The current essay, written by an appropriately anonymized
student to a neurotransmitters Psychology prompt, occupies
the majority of the screen. On the right there is a grid that the
instructor uses to assign scores on different rubric traits. At
this point in the figure, the instructor has given scores for all
traits; for instance, a 3 was awarded for the Organization trait.
Across the top of the screen are navigation controls, as well
as a timeline indicating the stages in the modeling process

Figure 4. Screenshot of instructor’s grading user interface during the
“Train the Assistant” phase of modeling. The current student essay de-
termined by active learning is in the box, the grading interface is in the
gray shaded area to the right, and navigation and progress timeline are
at the top.

and the current progress in the “Train the Assistant” phase. A
notification box indicates that, based on a heuristic and current
model performance, the instructor has scored approximately
50% of the essays necessary before the model will be ready
for the instructor to evaluate.

When the instructor clicks the “next” button, the next selected
essay is displayed, and the current essay and scores are queued
for the next batch run of modeling and active learning. When
that batch runs, the quality of the model is evaluated by cross
validation. If it doesn’t meet a minimum correlation threshold,
the instructor continues scoring, but now with a new batch
provided by active learning. If the model does meet the min-
imum correlation threshold, the instructor moves to the next
phase, “Tune the Assistant”, in which they are able to eval-
uate how well their scoring agrees with the AES model. In
this phase, the instructor continues scoring essays in batches
provided by active learning. But now, after scoring each essay,
the instructor compares their scores to the automatically gen-
erated scores. Based on this comparison and other feedback
available in the interface, such as the overall score distribution,
the instructor can evaluate the performance of the AES model.
When the instructor determines the model meets their criteria,
the remainder of the essays can be automatically scored. In
addition, the model is archived so that it can be reused with
this prompt in the future.

CONCLUSION
A major barrier to implementing automated essay scoring at
scale has been the need to collect large numbers of essays
for the training of scoring models. We have shown that batch



mode active learning is an effective technique for reducing
the number of essays that must be manually scored in order
to train a random forest model that performs well for AES.
Such reductions allow AES models to be trained faster and
more cheaply, leading to AES models created for and trained
by individual instructors. Furthermore, this approach works
iteratively with the instructor so that models are built on the
fly, allowing the integration of the system into the instructor’s
existing scoring workflow.

There are many directions for future work that could provide
for more robust active learning. We held batch sizes constant in
our experiments, but variable batch sizes could be used to both
account for current model uncertainty and reduce downtime
for the human scorer.

In a classroom setting, there may be multiple scorers available
(e.g., multiple teaching assistants in addition to the instructor),
which raises a number of issues. To minimize the total number
of hand-scored essays, approaches to intelligently partitioning
the essays across all scorers could be used. Additionally, some
of these scorers may be more or less skilled at scoring for
particular prompts, so properly accounting for this distribution
of skills would be critical.

Finally, developing good stopping criteria for training, while
beyond the scope of this work, is a critical aspect of active
learning in real world settings. There is an extensive literature
on optimal stopping criteria, but determining how best to
apply those techniques in a real-world essay scoring setting is
a difficult task. We are currently collecting pilot data with our
system in order to help shed light on these questions.
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