
CC Technical Report Number ACT -HI-135-89

The HITS Icon Editor

Mark Rosenstein and Louis M. Weitzman

MCC Nonconfidential

June, 1989

MCC
TECHNICAL

REPORT

MCC Technical Report Number ACT -HI-135-89

The HITS Icon Editor

Mark Rosenstein and Louis M. Weitzman

MCC Nonconfidential

June, 1989

Abstract

The Icon Editor is a platform for exploring the construction of dynamic graphical icons and the techniques
for relating those entities to an application. The research goals of this work are to discover new
techniques for the graphical specification of behavior and to develop a foundation for the connection of
an application to an interface. The broader vision is a framework supporting a series of
knowledge-based tools to aid an interface designer in building interfaces without coding.

A significant portion of the effort expended in the construction of a computer project is in the design of its
graphical interface. The appearance and functionality of this interface can critically affect the useability
and the overall aesthetics of the program. These issues are being addressed by The Human Interface
Tool Suite (HITS), an integrated design environment being developed in the Human Interface Laboratory
of MCC. (CONTINUED next page.)

Microelectronics and Computer Technology Corporation
Advanced Computing Technology

Human Interface Laboratory

3500 West Balcones Center Drive
Austin, TX 78759

(512) 343-0978

Copyright © 1989 Microelectronics and Computer Technology Corporation

All rights Reserved. Shareholders of MCC may reproduce and distribute
these materials for internal purposes by retaining MCC's copyright notice,
proprietary legends, and markings on all complete and partial copies.

MCC Technical Report Number ACT -HI-135-89

At a given moment, an interface provides a window into and a means to manipulate an application. The
total interface, then, is a series of these windows providing multiple perspectives on the application. One
technique to achieve a highly interactive system is to build the interface from dynamic components. We
refer to these components as icons, which represent a state or states within the application. An icon
presents a state through some aspect of its graphical appearance.

Microelectronics and Computer Technology Corporation
Advanced Computing Technology

Human Interface Laboratory

3500 West Balcones Center Drive
Austin, TX 78759

(512) 343-0978

Copyright © 1989 Microelectronics and Computer Technology Corporation

All rights Reserved. Shareholders of MCC may reproduce and distribute
these materials for internal purposes by retaining MCC's copyright notice ,
proprietary legends, and markings on all complete and partial copies.

The HITS Icon Editor

Table of Contents

Page

1 Abstract 1

2 Introduction 1

3 Presuppositions 3

4 Related Work 5

5 Basis of the Icon Editor 6
5.1 Primitives 7
5.2 Attributes of Primitives 7
5.3 Transformation Maps 8
5.4 Constraints 10
5.5 Typing 11

6 Use of the Icon Editor 12
6.1 Family of Bar Icons 12

6.1.1 Basic Bar 12
6.1.2 Force Bar 14
6.1.3 Threshold Bar 14

6.2 Queuing Example 16
6.2.1 Basic Queue 17
6.2.2 Three Queue 18

6.3 Current Implementation 20

7 Future of the Icon Editor 20
7.1 Improvements 21
7.2 Directions 23

8 Conclusion 24

9 Acknowledgments 24

10 Bibliography 25

A Attribute Types 26

B Map Types 29

List of Figures

Page
1 The HITS Icon Editor 2
2 The icon library menu pane 7
3 The primitive inspector pane showing attributes that can be dynamically 8

controlled
4 Editing the state visibility constraint for a new attribute 11

MCC Human Interface Laboratory MCC Non-Confidential

ii The HITS Icon Editor

5 A basic bar icon 12
6 Editing the map for the attribute SIZE of the indicator primitive 13
7 Editing the constraint for the new attribute VALUE on the basic bar 13
8 A force bar icon 14
9 Editing the map for the attribute LOCATION of the indicator primitive 14
10 A threshold bar icon 14
11 Editing the map for the attribute COLOR of the indicator color 15
12 Editing the constraint for the new attribute VALUE on the threshold bar 15
13 An application view showing 6 three-queue icons 16
14 A basic queue icon 17
15 Editing the attribute VISIBILITY of one of the basic queue's circles 17
16 Editing the constraint for the new attribute QUEUE-VALUE on the basic 18

queue
17 Editing the constraint for the new attribute QUEUE-COLOR on the basic 18

queue
18 A three-queue icon 18
19 Editing the constraint for the new attribute BOTTOM-QUEUE-VALUE on 19

the three queue icon
20 Editing the constraint for the new attribute BOTTOM-QUEUE-COLOR on 19

the three queue icon

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor

The HITS Icon Editor

The Specification of Graphic Behavior Without Coding

by

1. Abstract

Mark Rosenstein
Louis Weitzman

The Icon Editor is a platform for exploring the construction of dynamic graphical
icons and the techniques for relating those entities to an application. The research
goals of this work are to discover new techniques for the graphical specification of
behavior and to develop a foundation for the connection of an application to an
interface. The broader vision is a framework supporting a series of
knowledge-based tools to aid an interface designer in building interfaces without
coding.

2. Introduction

A significant portion of the effort expended in the construction of a computer
system is in the design of its graphical interface. The appearance and functionality
of this interface can critically affect the useablity and the overall aesthetics of the
program. These issues are being addressed by The Human Interface Tool Suite
(HITS), an integrated design environment being developed in the Human Interface
Laboratory of MCC. Interface design information is represented in a common
knowledge base and utilized by a wide variety of tools.

At a given moment, an interface provides a window into and a means to
manipulate an application. The total interface, then, is a series of these windows
providing multiple perspectives on the application. One technique to achieve a
highly interactive system is to build the interface from dynamic components. We
refer to these components as icons, which represent a state or states within the
application. An icon presents a state through some aspect of its graphical
appearance. Time paths are represented by graphical behavior. These behaviors
range from positioning a needle in a dial to flipping the switch in an image of a
wall light switch. Input dynamics involve interactions by which the icon is
modified, such as rotating the position of the needle or toggling the switch. These
actions change the appropriate state.

HITS contains a cascade of facilities concerned with the graphics incorporated
within the interface. The suite of graphic programs includes a tool, the Graphics
Editor [Weitzman, Rosenstein, and Winkler, 1989], to allow domain experts to build
iconic interfaces. These interfaces are the views that monitor and control the
application. Another tool, the HITS Icon Editor, allows the design and creation of

MCC Human Interlace Laboratory MCC Non-Confidential

2 The HITS Icon Editor

new icons to be used in these interfaces. Integrated with the Icon Editor and
Graphics Editor is Designer, a set of tools and design knowledge which
interactively analyzes, advises, and supports the selection of alternatives to the
graphical presentations generated by these tools.

-- ---- ------- ---- -~~- - - -~ - --

HITS Icon Edtt;or "u"~" " ''~v'~-~· LJ"'-"~'•' • ~

~~:·.
••••

Figure 1. The HITS Icon Editor

L. 1 br•ry : Test L lbr•ry

lnit Attribute ~~~~:tp~~~=~
Ck--ew Protot.yp~ 1:-:
PI"''bc: Inunct
Set. Confi~urc:

Reorder

~~:~~~~~Ty~o.~ ~6:Tl~7~~·c~on~co~~--u~~v~.--- ~~~-
Clear Find Undelete Draw Edit
Highlight Hitc Default Describe Shape
All List In1pc:ct Rotat..c

N1me Reflect

1s25e
8 . 175999941) .. (2 .4

a <l"ia~ STATIC-LOCATION (la.32S99tlft2 il.41'5
l <r'lap STATIC-VISIBILITY (:VISIBLE .. :VISIB
l <t'lap STATlC-COLOR (:BLRC~ .. :BLRCK) l525B

htllcat.er OUTLINE-COLOR tl <r'lap STfHIC-COLOR (:UHITE .. :WHITE) 1525113
Sl ZE a <l"iap NUP'IEIHC-LINEAR-SI2E (l~ .. (IL Q25BiiU!IaB
LOCATION tl <P1ap STATIC-LOCATI Oh ((8.3375 liL4875) .. (
VISISILI T'I' l <r'lap STATJC-VISIBILITV (: VIS!BLE,. :VI SIB
COlOR • <r'l•p STATIC-COLOR (:BlUE~:BlUE) 15251i!Sl3

A major motivation of the Icon Editor was to expand the class of domains and
users for HITS. We concluded that no existing set of icons would be sufficient for
all applications. We also concluded that hand coding of icons restrained the domain
of end users to too great an extent. What was needed was the ability to create the
interface objects interactively without coding. We adopted the Graphics Editor
model of providing the user with a set of primitives and the ability to combine,
incrementally refine, and critique these primitives.

This paper discusses the specification of these dynamic icons for use in an
interface. Considered here are both a conceptualization for building appearance
and behavior and the realization of these ideas in a prototype. In order to specify
the behaviors of these new icons, this work generalizes the notion of tapping, the
process of relating an interface object to its application. The tapping mechanism
supports a two-way communication between the interface and the application. Not
only do the icons monitor their application state, but they can also modify it via
mouse input. This representation often involves a transformation of values between
application and graphical states.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 3

The remainder of this paper will discuss the presuppositions behind our work, a
look at related efforts, the theoretical basis of our work, the current
implementation, some examples of constructing icons, and finally, our future
directions.

3. Presuppositions

Knowledge Based Tools

From both a research methodology and practical perspective, tools provide greater
leverage than one of a kind implementations. Therefore, our effort is focused on
the development of tools to further the work within our lab. Tools allow a
community of users to develop and share in expanding resources, e.g., libraries of
icons, that can be used across multiple projects and domains. While embodying the
interface constraints and knowledge of their initial design, tools are also an
enabling media allowing the creation of artifacts beyond those imagined by the
tools' designers.

Interfaces constructed with HITS are targeted toward knowledge based
applications. As computer systems move from mere calculation machines to true
collaborators, both applications and interfaces must maintain representations of
their structure and actions. Our tools aim to build next generation interfaces
having effective graphical presentations, advising, and natural language
interactions. All of these are doomed from the onset unless there are
representations over which they can perform computations. The implication is that
the dynamic icons must have explicit representations. Currently icons and
behaviors use an object oriented paradigm with full multiple inheritance,
differentiating classes and instances. An ongoing effort is to move these objects to
a frame based system, where we can take advantage of constraints as a more
expressive media for the relations among these entities.

Classes of Users

We have developed a perspective that categorizes the task of interface design into
three levels. One characterization of these levels is that they distinguish the
generality of the task being executed.

The least generality is afforded the end user performing the domain task. For this
user, the interface must help solve the problems of the application. This might be
a point of sale terminal, a library reference request system, the operating console
of a power plant, or interfaces to systems we have yet to imagine. This interface
must support the task by taking advantage of the skills of its operators and
compensating for the operators' shortcomings. This is the output of HITS tools
like the Graphics Editor.

MCC Human Interface Laboratory MCC Non-Confidential

4 The HITS Icon Editor

The next level involves the design of the end user interface. This design must
include all the perspectives needed to support the task. The designer knows the
task and how the end user will likely perform it. From this user centered view the
interface designer must build the interface from a set of pre-existing components
and connect the interface to the application. The Graphics Editor is targeted at
this level of user.

The last level provides the most general control by building and specifying the
components available to the interface builder. The component designer must
anticipate the need for the icons and construct them so that they can be placed in
future interfaces. For instance, the overall graphical style or lexicon used as input
for a product line would be specified at this level. This is the level of abstraction
a user of the Icon Editor must consider.

It is possible that one person may fill these multiple roles, but different classes of
his or her knowledge must be utilized to successfully complete each task. These
different levels provide discrete points on a continuum of control and specification.
One can easily generate tools that fall between these levels. By placing more
constraints on the interface designer's tool, the flexibility of that tool decreases.
These constraints can be imposed in a number of ways: by limiting the choice of
icons available, enforcing relationships between elements, and constraining the
actions of the tool. For instance, the Graphics Editor allows the construction of
any interface from available libraries of icons. This may provide too much freedom
for a company that wishes to maintain consistency throughout its product line.
The company could specialize the Graphics Editor to become a product interface
design tool. This tool would provide the standard components that the company
builds into its machines and embody the company's style and design rules.

What We Are Not

It is important to note that the goal of the Icon Editor and Graphics Editor is not
to provide support for building window systems. We have neither the manpower
nor the desire to duplicate efforts that address these issues. The dynamic entities
that we create are developed within an existing system, and this system provides
facilities that we use as basic resources, e.g., window frames and pop-up menus. In
the much longer time frame, we may be able to generalize this work to the
building of window configurations, but that is not on the current research agenda.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 5

4. Related Work

We have seen the increased commercial availability of tools that allow a user to
construct the appearance of an icon [e.g., Macintosh interfaces and Steamer
graphics]. What has been lacking in all but a few cases has been the ability to
specify the behavior for these icons. Mentioned here are a number of related
research efforts that allow users to specify interface behavior without
programming. Whether the technique be programming by example, visual
programming, or some other technique, the common goal is to provide a tool that
frees the designer from having to write code. One factor that distinguishes the
various approaches is the domain in which the system is used. Each domain places
strict requirements on the types of behaviors that are needed. A taxonomy of
various systems that use some of these techniques is provided in [Myers, 1986].

In programming by example the final result is specified through examples
presented to the system. The system infers what actions to take from these
examples. This technique has been applied in a variety of domains, including
education (Laura Gould's Programming by Rehearsal [Gould and Finzer, 1984])
and interface design (Myers' Peridot [Myers and Buxton, 1986]).

Peridot creates user interfaces by having the designer demonstrate to the system
how the interface should look and feel. This interaction generates code that can
then be executed. The technique to generate this code is automatic inferencing,
simple condition-action rules that help the system guess what the designer's
intentions are. These rules are used in the specification of the behaviors that the
elements take and in their presentation on the screen. The system supports
behaviors for building the user interface which includes menus, scroll-bars, and
light buttons.

Programming by Rehearsal does not use inferencing but does allow the user to
specify behavior by example. Through the use of the theater metaphor, productions
are created with performers carrying out specific tasks. These performers rely
heavily on predefined actions. Each action is associated with a specific predefined
cue. The writing of the interactions of the performers in a production is done
mostly, but not exclusively, by having the system watch the designer perform the
actions once. A nice feature of systems that use programming by example is that
everything is visible, and the designer of the interface is always thinking
concretely.

Visual Programming allows the specification of programs through the use of
graphics. Borning's further work with Thinglab [Borning, 1986] is a very good
example of using graphics to visually program constraints. Constraints are
specified by hooking up objects and then running them to get their new combined
behaviors. These objects are the building blocks of the system. For detailed
networks, however , the use of graphics becomes questionable because of the
complexity it introduces in the representation with which the designer must
interact.

MCC Human Interlace ~aboratory MCC Non-Confidential

6 The HITS Icon Editor

A different approach, one more similar to ours, is taken in Foley's Process
Visualization System [Foley, 1986]. Instead of specifically laying out the
constraints of how a new icon will behave or stepping through an example of what
the icon might do, this approach provides a mechanism to modify the specific
attributes that exist in the primitives. These attributes change as they reflect an
underlying dynamic process. This external process drives the appearance of the
interface. The constraints at work are the constraints within the external process,
and it is the state of the variables that affects the behavior of the new icon.
Binding to the process occurs by connecting a portion of an item in the view and a
process variable from a process library or data dictionary. The data dictionary
contains the variables that represent the values that can be monitored. A major
difference with this system and ours is that we restrict the ability to modify
attributes in the final presentation. The icon builder specifies what can be
modified, while it is the view builder, not necessarily the same person, who
connects those attributes in the specific instance. By encapsulating this new
behavior, we build an icon that will have a consistent presentation for future
views.

5. Basis of the Icon Editor

A fundamental idea of our system is that aspects of the application need to be
viewed and manipulated. The graphics tools of HITS provide for this interaction by
converting application state into graphic behaviors. An icon provides a language
for this conversion by allowing an interface designer to specify displayable and
modifiable aspects of the application. These characteristics are communicated by
graphical characteristics controlled by an icon's attributes. A crucial task is to
specify these attributes. With a foundation of primitive icons containing attributes
of size, location, visibility, and color, new icons with new attributes can be created
to be recombined into more complex icons.

The creation of an icon consists of four major steps. The first step specifies the
appearance of the icon. This involves placing and shaping instances of existing
icons. In the second step, attributes of these instances that will display dynamic
values are modified. As part of this process the type of input to the attribute is
specified. In the third step, new attributes for the new icon are created. The final
step completes the process by specifying how the new attributes control the
characteristics of the attributes identified in the second step. Upon completion,
instances of the new icon can be immediately used in building views or as
components of other icons.

In the remainder of this section, we will discuss the Icon Editor's support for each
of these steps: 1) primitive icons , the components used in creating a new icon, 2)
attributes, the displayable characteristics that can be modified dynamically, 3)
transformation maps, the objects that convert application values and user input to
graphic values, 4) constraints , the methodology to propagate input to existing
primitives' attributes, and 5) typing, the use of types to assist in the construction
of the new icons.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 7

5.1. Primitives

The basic mechanism for creating a new icon starts with the composition of icons
from previously defmed icon libraries. This provides the structure for the new
icons. A selected icon is positioned and sized on the display screen. Both color and
black-and-white screens are supported. In the case of black-and-white screens, the
system represents color intensities in shades of gray. The icon under construction
is placed in the current library indicated by the status line at the top of the Icon
Editor frame.

Figure 2 illustrates the icon library menus which provide access to the individual
icons. These libraries are generally organized by type, e.g., button icons, or by
project, e.g., the Copier Interface Editor. The working set of libraries from which
primitive icons are chosen is dynamic and can change to allow for primitive
components from many different sources.

Icon Libraries Other
1: PriMitive Ic 2: PriMitive Ic

!Rectangle !Line
Triangle !Spline

!Circle !Text
jArc Inage

Figure 2. The icon library menu pane

The libraries from which the designer may choose icons include a default primitive
library and user defined libraries built within the Icon Editor. The default library
currently consists of a set of hand-coded icons composed of rectangles, triangles,
circles, arcs, lines, splines, text, and bitmap images. An ongoing experiment is to
see how well we can bootstrap the system providing a wide variety of icons from
this limited set of initial primitives.

5.2. Attributes of Primitives

Attributes are the controllable characteristics of an icon. The modification of these
characteristics create the interactive and dynamic behavior of the icons. Each icon
maintains the graphic attributes necessary to present itself. As a minimum, every
icon includes the attributes of color, location, and visibility. The color attribute
affects the color in which the icon will be drawn, the location attribute affects
where the primitive will be drawn, and the visibility attribute affects whether a
primitive will be drawn at all. Icons that enclose an area (e.g., rectangles, circles)
also include the size and outline-color attributes. Primitives like text include
specialized attributes, such as horizontal-justification and font.

MCC Human Interlace Laboratory MCC Non-Confidential

8

Primitives
boundary OUTLINE-COLOR

SIZE
LOCATION
VISIBILITY
COLOR

indicator OUTLINE-COLOR
SIZE
LOCATION
VISIBILITY
COLOR

The HITS Icon Editor

~<Map STATIC-COLOR (:WHITE~:WHITE) 62077
~ < Map STATIC-SIZE ((0.4 0.17500004) ~(0.4
~<Map STATIC-LOCATION ((0.2875 0.475)~(0
~<Map STATIC-VISIBILITY (:VISIBLE~:VISIB
~<Map STATIC-COLOR (:BLACK~:BLACK) 62077

#<Map STATIC-COLOR (:WHITE~:WHITE) 62031
#<Map STATIC-SIZE ((0.024999976 0.150000
#<Map NUMERIC-LINEAR-LOCATION (0~(0.2999
#<Map STATIC-VISIBILITY (:VISIBLE~:VISIB
#<Map STATIC-COLOR (:BLUE~:BLUE) 6202775

'~~%~~~~"''*'""~"~~::::::::::::::::::::::::::::: : ::c

Figure 3. The primitive inspector pane showing attributes that can be dynamically
controlled

In Figure 3, we see the primitive inspector. The first column contains the name of
the icon. The second column contains the names of attributes associated with the
icon. The last column contains a complex representation of the map that is on the
attribute. It is the maps that provide the mechanism for dynamic change.

By default, newly created icons only include the attributes of color, location, and
visibility. Any additional attributes are icon specific and must be added by the icon
designer. These new attributes can then be used to constrain the behavior of this
icon as it is being used in an interface. Together, the default and user defined
attributes provide the control points from the Graphics Editor into the new icon.
When relating this new icon to the application, only these attributes will be
accessible via tapping to the interface builder. Similarly, when this new icon is
used as a component of another icon, only the default and newly defined attributes
will appear in the primitive inspector.

5.3. Transformation Maps

Attributes parameterize graphical behavior. A color attribute's value is used to
determine the color of a part of an icon. The color attribute uses a vocabulary of
color values, like red. Applications contain a separate language of numeric or
symbolic values. In order to perform dynamic behaviors, each icon maintains a
transformation map for each of its graphical attributes.

These maps accept an input value from an input device or the application and
modify it via a transformation. The result is a mapped value that is used by the
icon to determine how to display the attribute. Maps are implemented as objects
with defined input and output types. The convention for map names is to
concatenate the input type, the transformation, and the output type. For example,
a numeric-linear-size map takes a number and linearly transforms it to a size.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 9

The system contains a hierarchy of maps that utilize inheritance. The
numeric-linear-size map is based on a more general continuous-map. Maps of this
class use minimum and maximum inputs to compute outputs. In this case, the
outputs are minimum and maximum size specifications, so as the input moves
between the minimum and maximum value, the size smoothly moves between the
two specified size values. See Appendix B for a more complete list of current map
types.

Newly created attributes initially contain static maps, whose input type and output
type are the same and perform no transformation of their input value. Static maps
maintain a fixed state independent of changes in the application. They can also be
used in cases where their input value is of the same type as their required
displayable value, for example, in an application whose states are already color
values.

An example of a specialized map is the continuous-color-map. With this map a user
sets minimum and maximum values and the colors to be associated with these
endpoint values. As the numeric input goes from the minimum to the maximum,
the attribute to which this map is attached will continuously change from the
color at the minimum to the color at the maximum. For instance, one could build
a thermometer icon and assign the inside color attribute to have a continuous
color map. The color extremes could then change from an ice blue to brilliant red
as the application value varies.

In an application with standard sets of values such as [OFF, ON], fixed graphical
mappings can be utilized to provide uniformity throughout the interfaces being
built. For instance, if colors are used to represent state, an OFF component could
always be displayed as red, while an ON component is displayed as green. The
discrete class of mapping takes fixed input states and transforms them into fixed
output states.

Built into the system are a number of macro definitions that help support the
creation of new maps. Here is the specification of the off-on-color map which takes
the values [OFF, ON] and maps them to the color values [RED, GREEN]:

(defdiscrete-map OFF -ON-COLOR
:type-of-value 'off-on
:type-of-mapped-value 'color
:default-value :off
:mapping-list '((:off . :red)

(:on . :green)))

With these macros on-the-fly creation of discrete maps is very simple. Since all
this macro specifies is the map name and the transformation from application
names to graphical properties, a later release will provide an interface to make
this specification.

MCC Human Interlace Laboratory MCC Non-Confiden Ual

10 The HITS Icon Editor

5.4. Constraints

When building an icon, we allow the designer great latitude in determining the
flexibility of the new icon. There is no requirement that the new icon be dynamic,
and for some applications a set of icons that are placed merely for structure may
be built. The more interesting case is the icon designer giving the interface
designer varying degrees of modifiability by adding new behaviors to the icon. The
icon designer provides this by creating new attributes and constraining them to
the appropriate attributes of the component icons. We have investigated some
simple constraint mechanisms, including composition and state visibility.

Consider the following example of a composition constraint. As part of building a
bar graph icon, the designer wishes to allow a view builder the ability to label the
x-axis. A simple way to do this is to place a text primitive centered beneath the
x-axis. The text icon has an attribute, text-string, which the icon designer wishes
to make available for the graph. An attribute of the graph is created called
x-axis-label. This attribute is edited to be of type text and to compose the
text-string attribute of the text icon.

Composition is the simplest form of constraint provided. This constraint has a
type, in this case text, and a series of one or more attributes that are constrained
to have the same value. In this case, we use the Icon Editor interface to make the
attribute text-string be the attribute that x-axis-label constrains. When the view
designer adds the graph and edits its attributes, one of the attributes will be
x-label-axis. By default, this attribute will have a static text map. The view
designer can put in an appropriate text string, like IP Packets per Hour, for the
bar graph label.

Even from this simple design additional flexibility is available to the interface
designer. In the application, the designer might provide the ability to control the
period of the x-axis, i.e., days, months, or years. We could then tap our label into
this period variable to generate meaningful labels as the period changed. The view
designer chooses a format-text map for the x-axis-label, which uses a format string
and variable in the tap to map to text. If the format string was "IP packets per
-a" and the map was tapped to the appropriate variable, the x-axis-label would
vary between "IP packets per day," "IP packets per month," and "IP packets per
year" depending on the data being displayed. To provide more flexibility, the icon
designer could make available other characteristics of the text such as typeface
and justification.

Another type of constraint is state visibility. Many applications require icons to
vary their display among several discrete states. When this constraint is used on a
new attribute, it identifies which primitives within an icon are to be made visible
in the separate states. One interesting side effect of this type of constraint is that
a new map is dynamically created that encodes the transformations necessary to
describe the state trar{sitions. More automatic creation of maps is a feature that
we would like to support in future versions of our system.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 11

~ Edit Attribute Constraint No onstraint

Edit UALUE Attribute Constraint
Constraint Type: State Visibility CoMposition
State one: OFF

Icons Visible in state one: RECTAHGLE-1 and RECTAHGLE-2
State two: STANDBY

Icons Visible in state two: RECTAHGLE-1
State three: ON

Icons Visible in state three: RECTAHGLE-1 and RECTAHGLE-3
State four: a state

Icons Visible in state four: one or More prinitives
<~eoRT> aborts, <~N~> uses these values

Figure 4. Editing the state visibility constraint for a new attribute

As seen in Figure 4, the state visibility constraint is described by the state names
and the icons visible in each state. The input to this map will be one of the
application states (e.g., [OFF, STANDBY, ON]), and the result will be to make the
specified icons visible.

5.5. Typing

Every attribute is defined to be of a specific type. In addition, input and output
values of maps are also typed. By convention, the type of a map is the type of its
output value. The system uses this information to guide the users into making
semantically correct choices for the selection of maps for attributes and input
values for those maps. Each map placed in an attribute must have an output type
which corresponds to the attribute type. For instance, only color maps may be
placed within a color attribute. In addition, each map knows what type of input
value it expects. For example, only [OFF, STANDBY, ON] are acceptable as input
to an off-standby-on-xx:x map (where xxx is an unspecified transformation and
output type) , and only colors will be generated by a xx:x-color map (where xxx is an
unspecified input type and transformation). With this knowledge specific help can
be provided when the designer of the icon is unsure of the possible choices for
attributes, maps, or values. This information is also used to guarantee an icon's
attributes are tapped into legal values. Refer to Appendix A for the current
attribute types.

For user input, a mouse type is defined that indicates a mouse click is necessary
as an input value to a map. This stays within the general paradigm of the
mappings used throughout the system and has proven effective as a general input
technique.

MCC Human Interface Laboratory MCC Non-Confidential

12 The HITS Icon Editor

6. Use of the Icon Editor

To demonstrate these ideas we will use two separate Icon Editor examples. The
first example will highlight the construction of a family of icons to display a
continuous range of values. Each icon will be a bar icon with a different technique
for the presentation of a value within a set range. The second example will step
through the process of using the Icon Editor to solve a typical problem of
visualizing a new domain, that of monitoring the simulation of queuing in a
multiple processor environment. In order to understand the implications of design
tradeoffs in this simulation, a set of new icons was created to present the problem
effectively.

6.1. Family of Bar Icons

The family of bar icons includes the basic bar, the force bar, and the threshold bar.
Each of these icons only needs two primitives, a bounding rectangle which is the
extent of the icon and an indicator rectangle which will change its size, position,
and color depending on the desired presentation. The basic bar icon displays a
value by changing the size of the indicating bar to reflect its value. The force bar
presents its value by moving a flXed size indicator from left to right. The final bar
icon, a threshold bar, enhances the force bar's functionality by modifying the
indicator's color as the icon's value exceeds a threshold. This behavior is similar
to dials used in process control applications which include redlines to indicate
when an application parameter has exceeded a safe value.

6.1.1. Basic Bar

Figure 5. A basic bar icon

In the Icon Editor frame, we select the rectangle primitive. This rectangle is
placed and sized on the display screen to become the exterior boundary of the bar
icon. See Demonstrations of HITS 1.0 for a more detailed tutorial on the
step-by-step construction sequence. A second rectangle is added which will become
the indicator bar and is renamed to be indicator. By clicking on the size attribute
of the indicator, we will edit this attribute enabling it to transform numeric input
from a minimum-maximum range to a minimum-maximum size. An editing menu
is invoked to modify the map. The final edited menu is shown in Figure 6. We
first alter the default static map to be of the new type, numeric-linear-size map. As
we change the map, tl:ie parameters that are unique to the map (i.e., minimum and
maximum values and minimum and maximum sizes) are presented with their

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 13

default values. The size values default to the existing size of the indicator
rectangle. When modifying the maximum size parameter, the cursor is taken to
the display pane where we graphically indicate what the indicator should look like
when presenting its maximum value. In this case the maximum size will
completely fill the boundary rectangle.

»+ :Edit Attribute SIZE
Mapping: NUMERIC-LINEAR-SIZE

Min V~lue: 0.0
Max Value: 10.0
Size for Min value: (0.024426013 0.15569621)
Size for M~x value: (0.35271132 0.15569621)

(AsoRT) aborts, <END) uses these values

Figure 6. Editing the map for the attribute SIZE of the indicator primitive

Next the designer must create a new attribute that will be available to users of
this icon in the Graphics Editor. This new attribute we will label VALUE, and it
will constrain the indicator's size. When editing the constraint for this attribute,
the designer selects the attribute type to be numeric, so that the maps on the
existing attributes involved with this constraint must accept numeric values as
input.

, ,Edit VALUE Attribute Constraint
11 Constraint Type: State Visibility Co"position

Type of attributes: NUMERIC-ATTRIBUTE
Attributes to coMpose: <indicator SIZE>

' ' Mapping: STATIC-NUMERIC
! ! Value: 0
~<ABORT) aborts, ~ uses these values

Figure 7. Editing the constraint for the new attribute VALUE on the basic bar

Then through a series of mouse actions, the designer indicates that this new
attribute is equivalent to the size attribute of the indicator rectangle. The final
attribute constraint definition menu is shown in Figure 7. In this way, the
designer has specified that the new attribute VALUE will constrain the numeric
size attribute of the indicator rectangle.

We can test this constraint by setting the value of VALUE between 0 and 10 and
see the indicator change size proportionally between the minimum and the
maximum specified sizes.

MCC Human Interface Laboratory MCC Non-Confidential

14 The HITS Icon Editor

6.1.2. Force Bar

Figure 8. A force bar icon

In this variation of the bar icon, the value presented is via modification of the
indicator's location, not its size. The specification of this behavior is very similar
to the basic bar. The icon designer modifies the indicator's location attribute
instead of the size attribute. As shown in the menu in Figure 9, values for the
minimum and maximum locations can be modified. These default to the primitive's
current location. When modifying the location for the maximum value, the user is
taken to the display pane to position the indicator primitive. Intermediate values
for positions are determined by a linear interpretation between the minimum and
maximum locations.

»+ Edit Attribute LOCATION
Mapping: NUMERIC-LINEAR-LOCATION

Min Value: 0.0
Max Value: 10.0
Location for Min value: (0.29999998 0.4875)
Location for Max value: (0.65000004 0.4875)

~ < Ae ORT > aborts, (ENP > uses these values

Figure 9. Editing the map for the attribute LOCATION of the indicator primitive

A new attribute will be created for the force bar similar to the basic bar's VALUE
attribute. This attribute would be based on the indicator's location and will include
a numeric-linear-location map. Again, the designer can test this prototype by
changing the value of the attribute and seeing the position of the indicator
change.

6.1.3. Threshold Bar

I I

Figure 10. A threshold bar icon

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 15

The final icon in this series extends the capabilities of the force bar by adding a
behavior to the indicator's color attribute. By changing the map on the color
attribute, it, along with the location attribute, can be constrained by the new
VALUE attribute. This map must also accept numeric input but should generate a
color value used to draw the indicator.

»+ Edit Attribute COLOR
Mapping: NUMERIC-THRESHOLD-COLOR

Color below thre~hold: BLUE
Color ~bove thre~hold: RED
Threshold: 5

<AeoRT) aborts, ~ uses these values

Figure 11. Editing the map for the attribute COLOR of the indicator color

The numeric-threshold-color map, shown in Figure 11, changes the color it
generates when the input value exceeds a threshold value. As illustrated here,
when the value exceeds the threshold of 5, the indicator will change from blue, its
default, to red.

Once this map has been placed on the indicator's color attribute, it can be added
to the attribute VALUE's constraint, as shown in the editing menu in Figure 12.

,Edit VALUE Attribute Constraint

~ Attributes to coMpose: <indicator LOCATION>, <indicator COLOR >
: Mapping: STATIC-NUMERIC

~~ Constraint Type: State Visibility Conposition
·~· Type of attributes: NUMERIC-ATTRIBUTE

Value: 0
(AeoRT> aborts, ~> uses these values

Figure 12. Editing the constraint for the new attribute VALUE on the threshold
bar

This illustrates how multiple attributes of included primitives can be constrained.
It is not necessary that these attributes be from the same primitive. Only that
they accept the same type of input. As can be seen by these examples, it is very
easy to build up a library of similar icons. By specifying which attributes will be
modified and using the standard set of mappings, it is easy to specify the desired
behaviors.

MCC Human Interface Laboratory MCC Non-Confidential

16 The HITS Icon Editor

6.2. Queuing Example

This example helps to illustrate the capability of the Icon Editor to work in new
domains. It illustrates the technique of modular icon development by incrementally
building reusable components. This modularity allows these components to be
included in libraries for future icon construction. This example was taken from an
application developed by the Systems Technology Lab at MCC. A multiprocessor
simulation generated data which needed graphic support for its analysis. An
important condition to identify in the simulation is convoys. Convoys occurred
when the multiple queues were being used inefficiently. The important point is not
the application but the process of creating the supporting tools to help visualize
this new domain.

~ r--

~I 0 .
r--- ®® t--

®00© ~ ••
····I

-

~~

Figure 13. An application view showing 6 three-queue icons

The final view used with this data is shown in Figure 13. Each box is a processor,
and each processor contains three queues represented as a row of six circles. As
the simulation advances, each processor and included queues maintain the correct
presentation of its state.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 17

6.2.1. Basic Queue

Figure 14. A basic queue icon

We first created a basic queue icon that represents the queue as a linear sequence
of circles. When the queue is empty, no circles are visible. As the queue fills up,
more circles are displayed.

After adding the six circle primitives to the new icon, we edited the maps on all of
the circles' visibility attributes. By placing a numeric-threshold-visibility map on
each attribute, a new attribute could control all the circles' visibility. By
incrementing the threshold on each successive map, the number of circles
displayed would grow. Figure 15 illustrates one of the circle's visibility maps. This
map indicates that when the input value is 6 or more this primitive will be visible.

~ Edit Attribute VISI IL TY
Mapping: NUMERIC-THRESHOLD-VISIBILITY

Visible above threshold: T
Threshold: 6

<AeoRT> aborts, ~> uses these values

Figure 15. Editing the attribute VISIBILITY of one of the basic queue's circles

There are two important new attributes for this icon. The attribute queue-value
will be used to constrain the visibility of the circles to represent the queue length,
as described above. After modifying each of the visibility maps, we can then edit
the attribute constraint for this new attribute as shown in Figure 16. All visibility
attributes (now with an input type of numeric) are added to the list of attributes
to compose.

The second important new attribute describes the color of the queue. A designer
using the Graphics Editor should easily be able to specify the colors for all of the
circles in the queue. After adding the new attribute queue-color, the designer edits
its constraint as illustrated in Figure 17. The icon designer first makes the
attribute type to be color-attribute. Then all of the circles' colors are constrained
by this attribute. Now when the interface designer specifies the color via
queue-color, it will be propagated to all of the composed primitives.

This completes the specification of the basic queue. We will now show how this
new icon is incorporated into a more complex icon.

MCC Human Interface Laboratory MCC Non-Confidential

18 The HITS Icon Editor

»+ dit Attribute Constraint <Conpose <CIRCLE I VISIBIL Y> ... >

Edit QUEUE-VALUE Attribute Constraint
Constraint Type: State Visibility Conposition
Type of attributes: NUMERIC-ATTRIBUTE
Attributes to conpose: <CIRCLE-I VISIBILITY>. <CIRCLE-2 VISIBI ..
Mapping: STATIC-NUMERIC

Value: 6
<ABORT> aborts. (END) uses these values

Figure 16. Editing the constraint for the new attribute QUEUE-VALUE on the
basic queue

»+Edit Attribute Constraint <Conpose <CIRCLE I OLOR> ... >

Edit QUEUE-COLOR Attribute Constraint
Constraint Type: State Visibility Conposition
Type of attributes: COLOR-ATTRIBUTE
Attributes to conpose: <CIRCLE-I COLOR> • <CIRCLE-2 COLOR > ...
Mapping: STATIC-COLOR

Value: RED
(ABORT > aborts. <g,D > uses these values

Figure 17. Editing the constraint for the new attribute QUEUE-COLOR on the
basic queue

6.2.2. Three Queue

Figure 18. A three-queue icon

The previous steps defj.ne the basic queue icon. We can now use it as a primitive
in a three queue icon. In this icon we include three basic queues as primitives to
represent the top, middle, and bottom queues. We must now specify the new

MCC Non-Confidential MCC Human lnt~:~rface Laboratory

The HITS Icon Editor 19

attributes that will provide access to the values and colors for each separate
queue.

)+ Edit Attribute Constraint <CoMpose <botton queue UEUE- VALUE >
>

Edit BOTTOn-QUEUE-VALUE Attribute Constraint
Constraint Type: State Visibility Conposition
Type of attributes: NUMERIC-ATTRIBUTE
Attributes to coMpose: <botton-queue QUEUE-VALUE>
Mapping: STATIC-NUMERIC

Value: 6
(ABORT) aborts, ~> uses these values

Figure 19. Editing the constraint for the new attribute BOTTOM-QUEUE-VALUE
on the three queue icon

Editing the value for the bottom queue is shown in Figure 19. The attribute type
is NUMERIC-ATTRIBUTE, and the attribute constrained is the queue-value of the
bottom-queue. The new attribute that will constrain color of the bottom-queue is
shown in Figure 20. It is a color-attribute and constrains the bottom queue's colors.
We repeat this for each of the basic queues of this new icon.

)+ Edit Attribute Constraint <CoMpose <botton-queue QUEUE-COLOR >
>

Edit BOTTOn-QUEUE-COLOR Attribute Constraint
Constraint Type: State Visibility Conposition
Type of attributes: COLOR-ATTRIBUTE
Attributes to coMpose: <botton-queue QUEUE-COLOR >
Mapping: STATIC-COLOR

Value: BLUE
(ABORT > aborts, <~> uses these values

Figure 20. Editing the constraint for the new attribute BOTTOM-QUEUE-COLOR
on the three queue icon

We add a line around the outside extent of the three queue icon to finish the
graphic display of this icon. This icon is now available within the Graphics Editor,
and we can build a view with many multi-queue icons to visualize our domain
task. We tap the queue-values to the appropriate variables in our simulation and
watch as the various queues at each node reflect the behavior in the simulation. It
is interesting to note that when the developers of the simulation came to discuss
the interface, their attention was immediately drawn to the application and how
the queues were perfor ming in the simulation. The interface fell away, and they
were able to pursue their task.

MCC Human Interlace Laboratory MCC Non-Confidential

20 The HITS Icon Editor

6.3. Current Implementation

We currently have a working prototype of the Icon Editor. We are just beginning
to understand the task of icon construction, and as our understanding develops we
are evolving our interface to better satisfy the needs of this task. The current
interface allows its user access to almost all the power of the ideas discussed in
the previous sections, but in some cases too much of the underlying
implementation is visible. However, our design philosophy includes providing
access to the underlying substrate.

The current implementation runs on the Symbolics family of processors and is
written in Symbolics Common Lisp using the Flavors object-oriented programming
facility. Both color and black-and-white interfaces are supported.

The use of an object-oriented programming paradigm has greatly facilitated the
development of this system. The power of the object-oriented approach allows the
combination of inherited behaviors and characteristics for the icons, their
attributes, and maps. For example, icons are implemented as objects. A particular
class of icon, say circle, inherits most of its properties from basic icon classes
which deal with many housekeeping functions. Each new class of icon provides
methods for the generic functions: draw, to-show, and probe. The icon's draw
method controls the icons appearance on the screen, while the to-show method
details the input characteristics of the icon, and the probe method details the
interaction of the icon and the application.

However, the use of object-oriented programming is not sufficient as the
applications and interface become more sophisticated. We are moving toward a
knowledge-based approach to the representation of icons and the task of interface
construction itself. This facilitates integration with other components within the
HITS environment and enables assistance in the creation of iconic interfaces.

7. Future of the Icon Editor

The Icon Editor provides a means for exploring the specification of dynamic
graphical behaviors. As more interfaces are built with the system our methodology
will be strained, helping us to better understand the limits and coverage of this
approach. In this section we discuss the short and long range plans for the Icon
Editor, evolving to a better understanding of interface creation and relating an
application to an interface.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 21

7.1. Improvements

A number of issues need to be addressed concerning the day-to-day problems of the
designer. These issues range from substrate insufficiencies to improving tool
interfaces.

View and Icon Independence

Currently there are two paradigms of interaction between an application and its
graphical interface. In one the view controls the icons. In this approach commands
address the view to manipulate its icons. In the other approach each icon supports
its own editing. Here the application must manage the set of icons that is its
interface. Merging these two techniques will not only provide the functionality of
views for new applications but also allow the ease of direct interaction. Detailed
issues here include: the storage and retrieval of these icons, what process controls
the underlying application, updating the icons visual presentation, how that
process knows about the icons, and switching between editing and interacting
based on context.

Additional Primitives, Attributes, and Behaviors

We have on the drawing board additional primitives, attributes, and behaviors that
will greatly enhance the effectiveness of an interface. A number of these ideas will
expand ·the icons' range into additional modalities. An audio icon, for example,
could be used as part of an alarm icon. With the use of a numeric-threshold-audio
map an audio signal could be generated when input exceeded a specified threshold.
Another area of active investigation is the integration of still video and video
segments. Dynamics, such as flow, can be represented using color table animation.
We are working to provide icon builders with a palette of animating colors to
make this behavior available. More prosaic additions include primitives to build
ticklines and rotary indicators, like needles.

Repetition and Conditionalization

Systems that deal with abstract issues through concrete representations require
effective concrete realizations. Repetition is a notion that is required in interfaces,
and simple implementation provide tedious interfaces. An analysis of the use of
repetition with our systems has revealed that repetition usually occurs from
attempting to represent an application's regular data structure. We have
implemented a multi-icon, which solves this portion of complex data structure
representation. A user lays out a multi-icon in the standard manner. In critiquing
the icon, the user can specify the type of icon to represent each element of the
data structure and a layout in one or two dimensions. When tapping, the icon
provides alternative mappings between the data structure and the elements of the
lCOn.

MCC Human Interlace Laboratory MCC Non-Confidential

22 The HITS Icon Editor

Redisplay optimization

In complex scenes automatic optimal redisplay of changing graphical properties is
a difficult problem. The system must keep track of complex interactions between
and internal to icons. The current system uses a combination of user specified
partial ordering of component drawings and a set of heuristics to compute redraw
candidates. Additional work is needed to fully handle all cases. Another approach is
to use a high-powered graphics workstation that can update the display in real
time based on the declarative state of the icons.

A Map Editor

As we move to a more knowledge based approach, it is increasingly more
important to avoid mixing application and interface knowledge. The risk of this
confluence is greatest in maps. To see this, consider a user wanting to show in
the interface a complex combination of a number of characteristics in the
application. A user could write a complex map to accomplish this, but in most
cases this would be wrong. The correct approach is to define this new combination
in the application, since it almost certainly derives its semantics there. Secondly,
by putting it in the application's knowledge base, knowledge base sources, such as
advising, have access to it as well as allowing views from additional perspectives.

Our interest is in providing a large coverage without encouraging the wrong level
of abstrl:l.ction. For the special case of discrete maps, we understand how to build
the Lisp instructions from a higher level specification but still at the map level. In
some cases it is possible to supply an interface at a much higher level. For
instance, the specification of the state visibility constraint in designing new
attributes actually builds maps, though the user is unaware of the process. We
need more general tools and conceptualizations to support this higher level view.

Improved Interface

Our primary focus has been to provide as much functionality to the icon designer
as possible. To this end the interface itself has been neglected. We envision a
much better interface to our tool, one that focuses more on the task and less on
the underlying implementation.

Portability

Lately, portability has been a topic of concern. We have looked at moving toward a
more industry standard platform. This would mean Common Lisp, CLOS, and an X
window substrate. If our code ran in these standards, we would be closer to
running in many different workstation environments.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 23

7.2. Directions

We believe that systems in the future will not only be reactive but will actively
aid in the task being jointly solved by the computer and its user. In order to
support the user, these systems will rely heavily on knowledge bases. These
knowledge bases will contain information on the application, the user, and the
interface itself. Our next major effort is to provide an underlying substrate of
knowledge about the Icon and Graphics Editors and interface design in order to
support the user in building more effective interfaces.

We intend to represent the graphical knowledge that will classify icons and
relationships between the icons as they are utilized within an interface. Currently,
the Icon Editor is being integrated with CYC, a knowledge base language used
throughout HITS By sharing this common knowledge base substrate, we can
incorporate the other technologies developed in the lab.

Being part of a larger group, we are in a unique position to create an environment
that will support the user. We can draw on the tools from within HI to provide
advisory capabilities, natural language support, and sketch recognition. This
integration will provide more leverage than merely having graphical knowledge
available. Likewise, we will be able to support others with the specific knowledge
about the graphics used in the interface.

One direction we are taking is the integration of our efforts with the neural net
sketch recognition capabilities. A new class of interface building tools can be built
by providing the user with sketching as a way of specifying the icons to be added,
editing procedures to be invoked, and assisting in library lookup for unknown icon
types.

As well as drawing on knowledge, the graphics tools can augment the knowledge
base. As an interface is specified either by sketching or from mouse interactions, a
description of the interface can be constructed by the system to be used by other
HITS tools. Knowledge of new icons can be acquired easily and incrementally
added to the knowledge-base while using the Icon Editor.

Knowledge incorporated in graphics tools can assist in the design process. With
graphic design knowledge encoded, a user can be supported with design critiques.
Advice can be given to suggest alternative layouts or more effective designs,
allowing the user to see specific instantiations of solutions moving more rapidly
toward the most appropriate design. This set of design assistance tools will
interactively process the graphic interfaces generated by the Icon and Graphics
Editors and advise on and demonstrate, in context, more effective graphical
presentations.

MCC Human Interface Laboratory MCC Non-Confidential

24 The HITS Icon Editor

8. Conclusion

We have shown how behaviors can be specified for new icons and have presented
an implementation of a prototype that enables users to create a new icon and use
it. We intend to continue to explore interface issues in our evolving platform for
HITS. We plan to increase the functionality of our current interface for building
icons by making available additional graphic behaviors and building additional
tools to ease the construction of new icons.

As we increase the functionality of the Icon Editor, it will provide the graphics
necessary to support users of the HITS environment. In addition, these tools will
cooperate in the construction of a common knowledge base about the interface
itself. This common knowledge substrate will help drive the interface and support
the user in an integrated suite of tools. These efforts will, we believe, raise
interesting issues concerning the support of users in the interfaces of future
systems.

9. Acknowledgments

We would like to thank the members of the technical staff for their support and
comments in the creation of the Icon Editor as a prototypical tool in the Human
Interface Tool Suite. We would especially like to thank Tim McCandless for his
efforts in applying it to other components of HITS, making them more inspectable.
Most of all, we would like to thank Jim Hollan for his vision of what HITS could
be and for creating the kind of environment in which research and good ideas can
flourish.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 25

10. Bibliography

Borning, A., Defining Constraints Graphically, Human Factors zn Computing
Systems April 1986, 137-143.

Foley, J. D., McMath, C. F., Dynamic Process Visualization IEEE Computer
Graphics and Application March 1986, 16-25.

Gould, L., Finzer, W., Programming by Rehearsal, Xerox Palo Alto Research Center
Technical Report SCL-84-1. May, 1984 (excerpted in Byte 9(6) June, 1984).

Hollan, J . D., Hutchins, E. L., Weitzman, L., Steamer: An Interactive Inspectable
Simulation-Based Training System AI Magazine, Vol. 5 No. 2, 1984, 15-28.
(reprinted in Artificial Intelligence and Instruction, (Ed.) Greg Kearsley,
Addison-Wesley, 1987).

Hollan, J. D., Hutchins, E. L., McCandless, T. P., Rosenstein, M., & Weitzman, L.,
Graphical Interfaces for Simulation Advances in Man-Machine Systems Research,
Vol. 3, (Ed.) W.B. Rouse, Jai Press, 1987.

Martin, G., Avery, J., Pittman, J., personal conversations about the capabilities of
neural net sketch recognition.

Members of the Human Interface Laboratory, Demonstrations of HITS 1.0: The
Human Interface Tool Suite, MCC Technical Report ACT-HI-116-89-P, March 1989.

Myers, B. A., Visual Programming, Programming by Example, and Program
Visualization: A Taxonomy, CHI'86 Conference Proceedings, April 1986.

Myers, B. A., Buxton, W., Creating Highly-Interactive and Graphical User
Interfaces by Demonstration, Computer Graphics Vol. 20 No. 4 1986, 249-258.

Weitzman, L., Designer: A Knowledge-Based Graphic Design Assistant, Institute for
Cognitive Science Report 8609, July 1986. (Reprinted in MCC Technical Report
ACA-HI-017-88, January 1988).

Weitzman, L., Rosenstein, M., Winkler, A., The HITS Simulation Environment,
MCC Technical Report ACT-HI-120-89, May 1989.

MCC Human Interlace Laboratory MCC Non-Confidential

26

Appendix A

Attribute Types

The HITS Icon Editor

The following is the list of attribute types that are currently available. The
attribute types place restrictions on the type of values that an icon primitive can
take. Each attribute type is listed with the values and/or restrictions on that value,
the default value, and the maps that map to this value type. The map types are
described in Appendix B.

Binary-Attribute

Color-Attribute

Binary attributes have the values of 0 and 1. The default value
is 0.

Maps that map to this type: STATIC-BINARY
MOUSE-DISCRETE-BINARY

Color attributes consist of the basic colors available. These
colors include :RED :GREEN :YELLOW :BLUE :CYAN
:MAGENTA :BLACK :DARK-GRAY :LIGHT-GRAY :WHITE.
The default color is :WHITE.

Maps that map to this type: STATIC-COLOR
NUMERIC-LINEAR-COLOR NUMERIC-THRESHOLD-COLOR
SECURED-WARMUP-OPERATING-COLOR
OFF-LOW-HIGH-COLOR LOGICAL-COLOR BINARY-COLOR
OFF-ON-COLOR MOUSE-DISCRETE-COLOR

Horizontal-Justification-Attribute
Horizontal-Justification attributes are used for the placement
of text. The legal values are :Left :Right :Center. The default
is :Left.

Maps that map to this type:
STATIC-HORIZONTAL-JUSTIFICATION
MOUSE-DISCRETE-HORIZONTAL-JUSTIFICATION

Location-Attribute The location attribute is an x y coordinate pair. The default
values are taken from the initial position of the icon.

Maps that map to this type: STATIC-LOCATION
NUMERIC-LINEAR-LOCATION

Logical-Attribute Logical attributes include NIL and T. The default is NIL.

Maps that map to this type: STATIC-LOGICAL
MOUSE-DISCRETE-LOGICAL

Numeric-Attribute This attribute is the corresponds to the Common Lisp type for
number. The default is 0.

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 27

Maps that map to this type: STATIC-NUMERIC
NUMERIC-AFFINE-NUMERIC MOUSE-NUMERIC

Off-Low-High-Attribute

Off-On-Attribute

Overlay

This attribute is for the discrete class of values :OFF :LOW
:HIGH. The default is :OFF.

Maps that map to this type: STATIC-OFF-LOW-IDGH
MOUSE-DISCRETE-OFF-LOW-HIGH

This attribute is for the discrete class of values :OFF :ON.
The default is :OFF.

Maps that map to this type: STATIC-OFF-ON
MOUSE-DISCRETE-OFF-ON

This attribute type is used with bitmap icons when one bitmap
is overlaying another. Special attention must be addressed to
the erasing and drawing sequences. The legal values for this
attribute are NIL and T. The default is NIL.

Maps that map to this type: STATIC-OVERLAY
MOUSE-DISCRETE-OVERLAY

Secured-Warmup-Operating-Attribute

Size-Attribute

Text-Attribute

This attribute defines the discrete class of values :SECURED
:WARMUP :OPERATING. The default value is :SECURED.

Maps that map to this type:
STATIC-SECURED-WARMUP-OPERATING
MOUSE-DISCRETE-SECURED-WARMUP-OPERATING

This attribute defines the size of the icon. The default size is
.1 .1 but this is overridden when the user creates and sizes a
new icon. The size is taken from the user input.

Maps that map to this type: STATIC-SIZE
NUMERIC-LINEAR-SIZE

This attribute is a text string that can be used in an icon. The
default is the empty string (i.e., "").

Maps that map to this type: STATIC-TEXT
NUMERIC-FORMAT-TEXT

Text-Font-Attribute This attribute is used to determine the font type. The legal
values are :SMALL :MEDIUM :LARGE :MEDIUM-BOLD
:MEDIUM-ITALIC :VERY-LARGE. The default is :MEDIUM.

MCC Human Interface Laboratory MCC Non-Confidential

28 The HITS Icon Editor

Maps that map to this type: STATIC-TEXT-FONT
MOUSE-DISCRETE-TEXT-FONT

Visibility-Attribute This attribute is for the visibility of the icon. The legal values
are :VISIBLE and :INVISIBLE. The default is :VISIBLE.

MCC Non-Confidential

Maps that map to this type:
STATE-DISCRETE-VISIBILITY
NUMERIC-THRESHOLD-VISIBILITY
LOG I CAL-VISIBILITY
MOUSE-DISCRETE-VISIBILITY

STATIC-VISIBILITY

OFF-ON-VISIBILITY
BINARY-VISIBILITY

MCC Human Interface Laboratory

The HITS Icon Editor

Appendix B

Map Types

29

The following is the list of map types that are currently available in the system.
Each map is presented with its input values, its output values, the transformation
from input to output, and a default value when instantiated.

Color Maps

Binary-Color

Logical-Color

Type of input value: Binary
Type of output value: Color
Mapping transformation: ((0 . :Red) (1 . :Green))
Default value: 0

Type of input value: Logical
Type of output value: Color
Mapping transformation: ((Nil . :Red) (T . :Green))
Default value: Nil

Mouse-Discrete-Color
Type of input value: A mouse position
Type of output value: Color
Mapping transformation:
Default value:

Numeric-Linear-Color
Type of input value: Number
Type of output value: Color
Mapping transformation:
Default value:

Numeric-Threshold-Color

0 ff-Low-High-Color

Off-On-Color

Type of input value: Number
Type of output value: Color
Mapping transformation:
Default value:

Type of input value: Off-Low-High
Type of output value: Color
Mapping transformation: ((:Off . :Red) (:Low . :Yellow) (:High .
:Green))
Default value: :Off

Type of input value: Off-On
Type of output value: Color
Mapping transformation: ((:Off . :Red) (:On . :Green))
Default value: :Off

MCC Human Interlace Laboratory MCC Non-Confidential

30 The HITS Icon Editor

Secured-Warmup-Operating-Color

Static-Color

Size Maps

Numeric-Linear-Size

Static-Size

Visibility Maps

Type of input value: Secured-Warmup-Operating
Type of output value: Color
Mapping transformation: ((:Secured :Red) (:Operating .
:Green) (:Warmup . :Yellow))
Default value: :Secured

Type of input value: Color
Type of output value: Color
Mapping transformation: None
Default value: White

Type of input value: Number
Type of output value: Size
Mapping transformation: Linear transformation between
minimum (0) and maximum (10) values to minimum and
maximum sizes.
Default value: 0

Type of input value: Size
Type of output value: Size
Mapping transformation: None
Default value: (0 0)

Binary-Visibility Type of input value: Binary
Type of output value: Visibility
Mapping transformation: ((1 :Visible) (0 :Invisible))
Default value: 1

Logical-Visibility Type of input value: Logical
Type of output value: Visibility
Mapping transformation: ((T :Visible) (Nil :Invisible))
Default value: T

Mouse-Discrete-Visibility
Type of input value: A mouse position
Type of output value: Visibility
Mapping transformation: Discrete state transformation
Default value: :Visible

Off-On-Visibility Type of input value: Off-On
Type of output value: Visibility
Mapping transformation: ((Off :Invisible) (On :Visible))
Default value: On

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor

Static-Visibility

Location Maps

Type of input value: Visibility
Type of output value: Visibility
Mapping transformation: None
Default value: :Visible

31

Numeric-Linear-Location

Static-Location

Numeric Maps

Mouse-Numeric

Type of input value: Number
Type of output value: Location
Mapping transformation: Linear transformation between
minimum (0) and maximum (10) values to minimum and
maximum location.
Default value: 0

Type of input value: Location
Type of output value: Location
Mapping transformation: None
Default value: (0 0)

Type of input value: A mouse position
Type of output value: Number
Mapping transformation: A linear transformation (in x)
between mininum and maximum values.
Default value: 0

Numeric-Affine-Numeric

Static-Numeric

Type of input value: Number
Type of output value: Number
Mapping transformation: An affine tranformation that maps a
range of numbers to a new range.
Default value: 0

Type of input value: Number
Type of output value: Number
Mapping transformation: None
Default value: 0

MCC Human Interface Laboratory MCC Non-Confidential

32 The HITS Icon Editor

MCC Non-Confidential MCC Human Interface Laboratory

The HITS Icon Editor 33

Index

Abstract 1
Acknowledgments 24
Attributes of Primitives 7
Attribute Types 26
Basic Bar 12
Basic Queue 17
Basis of the Icon Editor 6
Bibliography 25
Conclusion 24
Constraints 10
Current Implementation 20
Directions 23
Family of Bar Icons 12
Force Bar 14
Future of the Icon Editor 20
Graphic Behavior

HITS

Improvements 21
Introduction 1
Map Types 29

Presuppositions 3
Primitives 7
Queuing Example 16
Related Work 5

Simulation Environment

Three Queue 18
Threshold Bar 14
Transformation Maps 8
Typing 11
Use of the Icon Editor 12

MCc; Human Interlace Laboratory MCC Non-Confidential

1~[1!!3
MICROELECTRON ICS AND
COMPUTER TECHNOLOGY
CORPORATION

3500 WEST BALCONES CENTER DR.
AUSTIN, TEXAS 78759
(512) 343-0978

